Interconnection of Distributed Energy Resources in Hawaii

David C. Parsons, Chief of Policy and Research
Hawaii Public Utilities Commission
May 8, 2019
Hawaii’s Clean Energy Policies

- Hawaii has some of the most aggressive clean energy policies in the country
 - 100% Renewable Portfolio Standard by 2045
 - 4,300 GWh Energy Efficiency Portfolio Standard by 2030
- Each of the islands is rapidly advancing towards these overarching policy objectives
- Success will represent a dramatic transformation of the electricity sector in Hawaii
HECO Companies Historical Renewable Growth and Projected Future Achievement

Source: Hawaii PUC 2018 RPS Report
Kauai Island Coop Historical Renewable Growth and Projected Future Achievement

Source: Hawaii PUC 2018 RPS Report
Recent Projects Suggest High Levels of RE May Be Possible Sooner

- PUC approved 6 new solar + storage projects for Hawaiian Electric Cos.
 - Totaling nearly 250 MW of generation and 1 GWh of storage
 - Across Oahu, Maui, and Hawaii islands
- KIUC recently announced it has passed 50% renewable generation with it’s latest solar + storage project
 - Anticipate achieving more than 70% renewable by as early as 2020
Demand Side Resources Critical for Cost-effective Renewable Achievement

- Demand side of the equation is a critical part of achieving broader policy objectives, especially as we progress closer towards 100% renewable
 - Includes energy efficiency, distributed storage, flexible/controllable demand, electric vehicles, etc.
- Increasingly, Hawaii will rely on “supply” from demand-side resources, which limits the usefulness of the distinction going forward

<table>
<thead>
<tr>
<th>December 2016 PSIP Projections</th>
<th>2017-2021</th>
<th>2022-2045</th>
</tr>
</thead>
<tbody>
<tr>
<td>New DG-PV</td>
<td>326 MW</td>
<td>2,086 MW</td>
</tr>
<tr>
<td>New Customer Self Supply (CSS) Energy Storage</td>
<td>89 MW-hr.</td>
<td>1,057 MW-hr.</td>
</tr>
<tr>
<td>New Demand Response Capacity</td>
<td>115 MW</td>
<td>442 MW</td>
</tr>
<tr>
<td>New Demand Response Energy Storage</td>
<td>104 MW-hr.</td>
<td>1,608 MW-hr.</td>
</tr>
</tbody>
</table>

- In addition to about 3,000 MW of new utility-scale renewable generation, HECO’s plans by 2045 include more than:
 - 2,400 MW of distributed solar PV
 - 550 MW and 2.8 GWh of distributed energy storage

Source: Hawaiian Electric Grid Modernization Strategy
Distributed Energy Integration Challenges

<table>
<thead>
<tr>
<th>System-level</th>
<th>Examples of Technical Integration Challenges</th>
<th>Contingency Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Over-generation and increasing variability in generation resulting in:</td>
<td>Behavior of aggregate DER fleet may exacerbate grid instability during emergencies:</td>
</tr>
<tr>
<td></td>
<td>- Curtailment of other renewable generation</td>
<td>- Need grid-supportive frequency and voltage trip and ride through settings</td>
</tr>
<tr>
<td></td>
<td>- Frequency regulation and ramping challenges for central generation</td>
<td></td>
</tr>
<tr>
<td>Circuit-level</td>
<td>Over-generation resulting in:</td>
<td>Behavior of DER systems during circuit-level contingencies may result in:</td>
</tr>
<tr>
<td></td>
<td>- Approaching or exceeding distribution system equipment capacity limitations</td>
<td>- Unintentional islanding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Temporary load rejection overvoltage</td>
</tr>
</tbody>
</table>

Source: Table 2, Staff Report and Proposal, Docket No. 2014-0192, March 31, 2015
DER Policy Dockets in Hawaii

<table>
<thead>
<tr>
<th>Docket Title</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Distributed Energy Resources (2014-0192)** | • Interconnection requirements for DER, including advanced inverter functions
• New tariff options (e.g., Smart Export) for customers to deliver energy and other services to the grid, alongside dynamic rate designs (e.g., time-of-use) | |
| **Demand Response Portfolio (2015-0412)** | • Market-based procurement of grid services from DER, including aggregated loads, distributed generation, and storage
• Enables customers to provide ancillary services (e.g., frequency response, regulation) more cost-effectively than conventional solutions | |
| **Grid Modernization (2018-0141)** | • Advanced grid technologies and software systems to enable DER integration and utilization
• Includes operational dispatch of customer loads, distribution system sensing, communications, automation, control, and metering infrastructure | |
| **Integrated Grid Planning (2018-0165)** | • Integrated planning process across generation, transmission, and distribution
• Competitive sourcing mechanisms for grid infrastructure and services, including non-wires solutions | |
DER Tariffs and Interconnection Standards

DER Program Options
- Self-Supply (non-export)
- CGS+ (utility control when needed)
- Smart Export (time-varying export prices)

Rule 14H (DER Interconnection)
- Frequency and Voltage Ride Through
- Volt-var and Volt-Watt
- Frequency-Watt
Hosting Capacity Analysis

Source: HECO Companies
Interconnection Queue

<table>
<thead>
<tr>
<th>Queue Position</th>
<th>Agreement ID</th>
<th>Procurement</th>
<th>Project Developer ID</th>
<th>System Size</th>
<th>Circuit</th>
<th>Review Status</th>
<th>Date Interconnection Application Received</th>
<th>Date Determined Complete and Valid</th>
<th>IRS Start</th>
<th>IRS Complete</th>
<th>Date Project Must Be Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>20141211182400</td>
<td>T3-015-02</td>
<td>SIA</td>
<td>2740</td>
<td>924.8</td>
<td>KAPOLEI 2</td>
<td>CAR</td>
<td>12/11/2014</td>
<td>01/30/2015</td>
<td>07/21/2015</td>
<td>07/20/2017</td>
<td></td>
</tr>
<tr>
<td>20150925092700</td>
<td>SIA-280</td>
<td>SIA</td>
<td>2740</td>
<td>924.8</td>
<td>DOLE 1</td>
<td>PI</td>
<td>02/23/2015</td>
<td>03/16/2015</td>
<td>01/29/2016</td>
<td>06/28/2017</td>
<td></td>
</tr>
<tr>
<td>20150925092700</td>
<td>SIA-348</td>
<td>SIA</td>
<td>#</td>
<td>27</td>
<td>DOLE 1</td>
<td>CAR</td>
<td>07/22/2015</td>
<td>07/22/2015</td>
<td>01/29/2016</td>
<td>06/28/2017</td>
<td></td>
</tr>
<tr>
<td>20140725018200</td>
<td>SIA-250</td>
<td>SIA</td>
<td>2740</td>
<td>471.45</td>
<td>HELEMANO</td>
<td>PE</td>
<td>07/02/2014</td>
<td>07/14/2014</td>
<td>01/29/2016</td>
<td>06/28/2017</td>
<td></td>
</tr>
<tr>
<td>20150223151052</td>
<td>SIA-281</td>
<td>SIA</td>
<td>2740</td>
<td>8632</td>
<td>WAHIAWA-MIKILUA</td>
<td>CAR</td>
<td>02/23/2015</td>
<td>04/03/2015</td>
<td>01/29/2016</td>
<td>06/28/2017</td>
<td></td>
</tr>
<tr>
<td>20140703115500</td>
<td>SIA-243A</td>
<td>SIA</td>
<td>3765</td>
<td>2295</td>
<td>WAHIAWA-WAIALUA 1</td>
<td>CAR</td>
<td>06/11/2014</td>
<td>08/04/2014</td>
<td>01/29/2016</td>
<td>06/28/2017</td>
<td></td>
</tr>
<tr>
<td>20150925092700</td>
<td>SIA-339</td>
<td>SIA</td>
<td>3765</td>
<td>858</td>
<td>WAHIAWA-WAIALUA 1</td>
<td>CAR</td>
<td>07/22/2015</td>
<td>07/22/2015</td>
<td>01/29/2016</td>
<td>06/28/2017</td>
<td></td>
</tr>
<tr>
<td>20150925092700</td>
<td>SIA-282</td>
<td>SIA</td>
<td>2740</td>
<td>2099.15</td>
<td>zsub WHEELER</td>
<td>CAR</td>
<td>02/23/2015</td>
<td>03/09/2015</td>
<td>01/29/2016</td>
<td>06/28/2017</td>
<td></td>
</tr>
<tr>
<td>20150925092700</td>
<td>SIA-350</td>
<td>SIA</td>
<td>#</td>
<td>250</td>
<td>zsub WHEELER</td>
<td>CAR</td>
<td>08/06/2015</td>
<td>09/28/2015</td>
<td>01/29/2016</td>
<td>06/28/2017</td>
<td></td>
</tr>
</tbody>
</table>
Grid Modernization Essential to Integrating Additional Renewables

- PUC Approved HECO Companies Phase 1 Grid Modernization Project in March 2019

- $86 M investment in advanced grid technologies to enable DER integration and utilization

- Includes distribution system sensing, communications, automation, control, and metering infrastructure
Mahalo!

David C. Parsons
Hawaii Public Utilities Commission

David.C.Parsons@hawaii.gov
808-586-2020
Daily Load Profiles in 2020 and 2045

Energy Profile for 6/14/2020

Energy Profile for 3/19/2045

Source: Hawaiian Electric 2016 PSIP Update