LEDS Global Partnership: 2050 Calculator Webinar

Edward Hogg - 27th February 2014
Why did the United Kingdom build the 2050 Calculator

How to use it

How we are working with other countries to develop their own version

A Global Calculator
There was an ill-informed debate in the UK about our energy system. We wanted to answer a number of questions:

1. How much energy can we supply from different energy technologies?
2. How much energy do different sectors use and how can we change this?
3. What is the cost of different energy pathways?
4. Which sectors are the one we should focus on? Which are less important?
5. Can we achieve our emissions target?
6. What impact would different pathways have on our air quality and land area?
7. What could happen to our energy dependency and security?
8. What is publically acceptable?
Why 2050? The UK has a Climate Change law that sets targets out to 2050.
The Calculator explores what is possible, **not** what you think will happen.

- **Level 1**: No effort (not business as usual)
- **Level 2**: Effort described by most stakeholders as achievable
- **Level 3**: Effort needing significant change – hard but deliverable
- **Level 4**: The maximum possible due to physical/practical constraints only
 (similar to ‘technical potential’)

The Department of Energy & Climate Change

And it provides different levels of detail depending on the audience.
We were awarded the Science, Engineering and Technology award at the Civil Service Awards, Buckingham Palace. And have been recently acknowledged for our work with other countries.
LEDS Global Partnership: 2050 Calculator Webinar

Why did the United Kingdom build the 2050 Calculator

How to use it

How we are working with other countries to develop their own version

A Global Calculator
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ambitious per capita energy demand reduction is needed — but is not sufficient</td>
</tr>
<tr>
<td>2</td>
<td>Substantial electrification of heating, transport and industry is needed</td>
</tr>
<tr>
<td>3</td>
<td>Electricity supply needs to be almost totally decarbonised, while supply may also need to double</td>
</tr>
<tr>
<td>4</td>
<td>A growing level of variable renewable generation increases the challenge of balancing the electricity grid</td>
</tr>
<tr>
<td>5</td>
<td>Sustainable bioenergy is a vital part of a low carbon energy system</td>
</tr>
<tr>
<td>6</td>
<td>Reduction in emissions from agriculture, waste, industrial processes and international transport will be necessary by 2050</td>
</tr>
<tr>
<td>7</td>
<td>Fossil fuels will continue to play an important role</td>
</tr>
</tbody>
</table>
LEDS Global Partnership: 2050 Calculator Webinar

Why did the United Kingdom build the 2050 Calculator

How to use it

How we are working with other countries to develop their own version

A Global Calculator
Because all our work is online it was very easy to share with other countries

https://www.gov.uk/international-outreach-work-of-the-2050-calculator

Department of Energy & Climate Change

International outreach work of the 2050 Calculator

The 2050 Calculator approach is being adapted and developed further by teams outside of the UK

2050 Calculator Overview

To support the UK 2050 Pathways Analysis DECC developed a 2050 Energy and Emissions Calculator model. The Calculator is a tool that helps strengthen the level of debate on energy issues in the UK.

What is the 2050 Calculator?

The Calculator is an open source energy and emissions model. It allows the user to explore all high-level energy and emission pathway options the country faces. For each possible 2050 pathways the user can further investigate impacts on land-use, electricity, energy security, energy flows, costs etc.

The UK 2050 Calculator exists in three formats:
China’s Energy Research Institute (ERI) have built their own version
And launched this at a conference of international observers
China has used its 2050 Calculator to look at a range of different issues.

1. To show how China meets *Xiaokang* Society (a term introduced by Deng Xiaoping in 1979 as the eventual goal of Chinese modernization) by 2020.
2. What needs to happen if China energy consumption is to peak by 2030;
6. They are using it for China’s 2050 energy development strategy.
State of work

<table>
<thead>
<tr>
<th>Published</th>
<th>Excel complete – waiting to publish</th>
<th>Team’s working on the Excel</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>Belgium</td>
<td>Mexico</td>
</tr>
<tr>
<td>Belgium</td>
<td>China</td>
<td>Colombia</td>
</tr>
<tr>
<td>China</td>
<td>South Korea</td>
<td>Brazil</td>
</tr>
<tr>
<td>South Korea</td>
<td>India</td>
<td>Bangladesh</td>
</tr>
<tr>
<td>South Africa</td>
<td>Vietnam</td>
<td>Algeria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LEDS Global Partnership: 2050 Calculator Webinar

Why did the United Kingdom build the 2050 Calculator

How to use it

How we are working with other countries to develop their own version

A Global Calculator
The Global Calculator will complement the work of the Country Calculators.

The Global Calculator will make the case for tackling climate change and show how the global system adds up…

… the Country Calculators illustrate solutions at the country level.

In discussion:

- UK
- Belgium
- China
- South Korea

- Japan
- South Africa
- Bangladesh
- Brazil

- India
- Indonesia
- Mexico
- Taiwan

- Hungary
- Serbia and SEE
- Colombia
- Vietnam

- Thailand
- Algeria

- Poland
- Russia
- France
- USA
- Philippines
- Ethiopia
- Nigeria
Key target audiences will be multinational businesses, NGOs and governments

<table>
<thead>
<tr>
<th>User</th>
<th>Questions answered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key decision makers within multinational businesses</td>
<td>Scenario analysis tool for showing how global energy, land and food system “adds up” and showing the business opportunities that could arise from decarbonisation.</td>
</tr>
<tr>
<td>NGOs and some parts of governments</td>
<td>Show at a glance how pathways from other models compare (e.g. IEA 2, 4 and 6D pathways).</td>
</tr>
</tbody>
</table>
| All users | To make the case for tackling climate change by:
 • Showing detrimental impacts
 • Illustrating aspirational low emission pathways. |
... but it will not be designed to answer more complex price impact and burden sharing questions

It will not be designed to answer questions such as:

- **Price impacts**: what is the impact of a global carbon tax of $x/tCO2?

- **Burden sharing**: if the US did X and China did Y, how would other countries respond and what would happen to global emissions and climate impacts?

But it will be able to illustrate pathways from other models exploring these questions.
We will build it in partnership with a range of international experts

Team leader

- Department of Energy & Climate Change

Support from:
- World Resources Institute, USA
- Utrecht University, Netherlands
- Potsdam Institute, Germany
- Walker Institute, UK
- Rothamsted Research, UK
- University of Versailles Saint-Quentin-en-Yvelines, France
- Met Office, UK
- Tyndall Centre, UK

Funding:
- £550K DECC ICF funds
- £480K Climate-KIC