Greening the Grid

Utility-Scale Battery Storage: When, Where, Why and How Much?

Paul Denholm | Principle Energy Analyst, National Renewable Energy Laboratory | February 27, 2019
Overview

In power systems with increasing levels of variable RE...

• **What type** of battery storage is valuable for the power system?
• **What type** of storage will be valuable *in a high RE system*?
• Is battery storage needed to integrate renewable energy? *(Why?)*
• **How much** storage is appropriate?
• **Where** should battery storage be located?
• **When** does battery storage become cost-effective?

Answers to these questions are complex and system-specific. Some trends are emerging...
Key Takeaways

• In most power systems, storage isn’t yet needed to integrate larger amounts of variable RE.
 – “Stand-alone” RE integration applications are typically not cost effective…yet

• Storage applications need to consider duration, location, and ability to combine and monetize multiple services

• Storage is increasingly cost competitive for short-duration ancillary services, and long duration applications that combine some elements of capacity, energy and transmission services

• As RE penetration increases, this increases the value of storage, and storage becomes an increasingly valuable tool for RE integration
 – There are important potential tradeoffs when considering co-location of storage with RE or siting storage closer to load
Key concepts and definitions
Why all the hype, and why now?

73% cost reduction since 2010 due to technology improvements, economies of scale, manufacturing competition

Lithium-ion battery price survey, 2010-16 ($/kWh)
Source: Bloomberg New Energy Finance, Lithium-ion Battery Costs and Market (July 2017)

Global Cumulative Storage Deployments, 2016-2030 (GWh)
Source: Bloomberg New Energy Finance (November 2017)

Similar trajectory to PV deployment in early 2000s
What type of battery storage is valuable for the power system?

Applications for energy storage are defined by the following parameters:

- **Power capacity (kW)**: rate of charge or discharge (in kilowatts or megawatts)
- **Energy capacity (kWh)**: amount of stored energy (in kilowatt-hours or megawatt-hours)
- **Storage duration**: amount of time storage can discharge at its power capacity before depleting its energy capacity

For example, a battery with 1 MW of power capacity and 4 MWh of usable energy capacity will have a storage duration of 4 hours.
Is Battery Storage Needed to Integrate Renewable Energy?
Balancing Supply and Demand – The Importance of System-Wide Net Load

- Net load is energy demand after accounting for solar and wind generation
 - This is the energy demand that must be met by other resources on the power system (e.g., thermal, hydro, storage, energy trade, demand response)
 - Net load (like normal load without RE) is best balanced at the system level

Figure source: NREL Report No. FS-6A20-63039

Why batteries?
Do Individual Renewable Energy Plants Require “Backup” From Battery Storage?

- We don’t balance or “firm” individual loads
- Why should we balance individual generators?
- The variability and uncertainty of loads and generators are best optimized at a system level
- We of course need to address any additional need for operating reserves, transmission constraints etc.
- Need to consider impacts of spatial diversity and all sources of flexibility for integrating VRE

Aggregating solar

Lew et al. 2013

- Balancing individual solar plants could result in simultaneous charging AND discharging

Aggregating wind

Source: NREL/FS-6A20-63037

- 200 Turbines
- 15 Turbines

Why batteries?
Battery Storage Can be Considered as Part of the Flexibility Supply Curve

You probably do this first

Battery storage has historically been among the most expensive options for the integration of renewable energy (or any grid service)

But that is changing

Cochran et al. 2015
What type of battery storage is valuable for the power system?

What type of storage will be valuable in a high RE system?
Battery storage applications and potential value streams

<table>
<thead>
<tr>
<th>Type of Service</th>
<th>Timescale</th>
<th>Energy</th>
<th>Firm Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inertial Response</td>
<td>mS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Frequency Response</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Frequency Response</td>
<td>Min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Regulation</td>
<td>Hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramping reserves</td>
<td>Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency Spinning Reserves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement Nonspin Reserves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black-Start Capability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Upgrade Deferral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Congestion Relief</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Upgrade Deferral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Voltage Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Loss Reduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability and Resiliency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand Charge Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time of Use and Real-Time Pricing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Services currently valued in some markets
- Proposed or early adoption services
- Currently not valued services
Battery storage applications and potential value streams

- **Storage can provide a range of grid services at different timescales**
- **Value stacking** enables storage projects to monetize a range of value streams.
- **Markets and planning need to evolve** to enable power system services that storage (and other technologies) can provide.
- **Renewable integration is largely captured by existing service categories**

What type?

- Services currently valued in some markets
- Proposed or early adoption services
- Currently not valued services

How quickly initial response is needed

How long response is needed

How much capacity?

- **Energy**
- **Firm Capacity**

Application Types

- **Primary Frequency Response**
- **Inertial Response**
- **Fast Frequency Response**
- **Primary Frequency Response**
- **Frequency Regulation**
- **Ramping reserves**
- **Contingency Spinning Reserves**
- **Replacement Nonspin Reserves**
- **Voltage Support**
- **Black-Start Capability**
- **Transmission Upgrade Deferral**
- **Transmission Congestion Relief**
- **Distribution Upgrade Deferral**
- **Distribution Voltage Support**
- **Distribution Loss Reduction**
- **Power Quality**
- **Reliability and Resiliency**
- **Demand Charge Management**
- **Time of Use and Real-Time Pricing**
Battery storage applications and potential value streams

- Storage can provide a range of grid services at different timescales.
- **Value stacking** enables storage projects to monetize a range of value streams.
- Markets and planning need to evolve to enable power system services that storage (and other technologies) can provide.
- Renewable integration is largely captured by existing service categories.

A battery providing firm capacity may also provide energy arbitrage and transmission congestion relief.

Arbitrage alone cannot pay for storage.
Battery storage applications and potential value streams

- Storage can provide a range of grid services at different timescales
- Value stacking enables storage projects to monetize a range of value streams
- Markets and planning need to evolve to enable power system services that storage (and other technologies) can provide
- Renewable integration is largely captured by existing service categories

Services currently valued in some markets
- Green: Proposed or early adoption services
- Yellow: Currently not valued services

<table>
<thead>
<tr>
<th>Type of Service</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission Services</td>
<td>mS, S, Min, Hr, Day</td>
</tr>
<tr>
<td>Distribution Services</td>
<td>mS, S, Min, Hr, Day</td>
</tr>
<tr>
<td>End-Use Applications</td>
<td>mS, S, Min, Hr, Day</td>
</tr>
<tr>
<td>Ancillary Services</td>
<td>mS, S, Min, Hr, Day</td>
</tr>
</tbody>
</table>

- Energy and Capacity
- Transmission Services
- Distribution Services
- End-Use Applications

Value recovered from an ISO/RTO market?

- In addition to unvalued services, the value streams may cut across different market conditions.

Value recovered from a cost-of-service transmission company?

- Renewable integration is largely captured by existing service categories
Battery storage applications and potential value streams

- Storage can provide a range of grid services at different timescales
- Value stacking enables storage projects to monetize a range of value streams
- Markets and planning need to evolve to enable power system services that storage (and other technologies) can provide
- Renewable integration is largely captured by existing service categories

- Services currently valued in some markets
- Proposed or early adoption services
- Currently not valued services

- **Renewable time-shifting and curtailment mitigation**
- **Renewable “firming”**
- **Renewable ramping**
Battery storage applications and potential value streams

Ongoing competition from various other flexibility resources

- Energy and Capacity
- Ancillary Services
- Transmission Services
- Distribution Services
- End-Use Applications

Types of Services and Timescales:

<table>
<thead>
<tr>
<th>Type of Service</th>
<th>mS</th>
<th>s</th>
<th>Min</th>
<th>Hr</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy and Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inertial Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Frequency Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Frequency Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramping Reserves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency Spinning Reserves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement Nonspin Reserves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black-Start Capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancillary Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Deferral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Congestion Relief</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Deferral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Voltage Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Loss Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End-Use Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability and Resiliency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand Charge Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time of Use and Real-Time Pricing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RELATIVE ECONOMICS OF INTEGRATION OPTIONS

- Inertial Response
- Fast Frequency Response
- Primary Frequency Response
- Frequency Regulation
- Ramping reserves
- Contingency Spinning Reserves
- Replacement Nonspin Reserves
- Voltage Support
- Black-Start Capability
- Transmission Upgrade Deferral
- Transmission Congestion Relief
- Distribution Upgrade Deferral
- Distribution Voltage Support
- Distribution Loss Reduction
- Power Quality
- Reliability and Resiliency
- Demand Charge Management
- Time of Use and Real-Time Pricing

Options costs are system-dependent and evolving over time.
Two Examples of Potentially Cost Effective Storage Applications

Operating Reserves

Shorter duration
(<1 hour)

- Regulation reserves to balance short-term variability
- Fast frequency response to replace lost inertia
Two Examples of Potentially Cost Effective Storage Applications

Peaking Capacity

Longer duration
(>1 hour)
- Peaking capacity resource
- Energy shifting to recover curtailed RE, arbitrage prices
- Can also provide transmission services
Battery storage for the provision of operating reserves
Early Deployment of Batteries for Reserves

• Significant deployment for frequency regulation (regulating reserves/ secondary frequency response)

• Often most cost effective early application
 – Short duration requirements
 – High utilization of storage assets

![Large-Scale Battery Storage Applications in the U.S.](image)
Operating Reserves Represents the Ability to Increase or Decrease Output Based on Grid Requirements

Batteries have extremely fast response times. Batteries are not limited by minimum stable levels and can typically operate over full range. Batteries are limited by stored energy, so shorter duration devices may not be able to provide long-duration reserve services such as replacement reserves.
Regulating Reserves

- Responds to events (e.g., large generator faults) than can result in decreased frequency
- Operates during normal operations to respond to normal short-term variations in supply and demand

Why batteries?
Why Batteries for Regulating Reserves?

Timescale

<table>
<thead>
<tr>
<th></th>
<th>mS</th>
<th>S</th>
<th>Min</th>
<th>Hr</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Frequency Responsive Reserves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Regulating Reserves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Fast Frequency Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Ramping Reserves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Normal operation provided by “energy and capacity”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fast response requirement means it is the most costly of current market services

Usually only requires 15-30 minutes of capacity – means relatively low cost batteries

Proposed or early adoption market services

Currently procured via markets

- **Inertial Response**
- **Primary Frequency Response**
- **Fast Frequency Response**
- **Regulating Reserves**
- **Non-spinning Reserves**
- **Replacement Reserves**
- **Economic Dispatch**
Batteries Have the Flexibility to Continuously Provide Upward and Downward Regulation

Energy storage typically has a larger operating range for provision of regulating reserves than thermal generation.
Impact of Increasing Amounts of Renewable Energy on Reserve Requirements?

- More variable RE could increase the need for various reserves, including regulating reserves
 - BUT ... integration studies show a relatively small increase in operating reserve requirements as solar and wind are added
- For example, regulation reserve requirements have decreased in Texas as wind penetration has increased

There is also competition for the provision of operating reserves from other sources, including curtailed wind and solar and demand response
• Something will need to replace inertial response and primary frequency response (PFR) from synchronous generators.

• Inconsistent terminology, but “fast frequency response” captures the ability of resources (including storage) to measure and rapidly respond to deviations in frequency.

• FFR could replace some of the need for inertial response.
Example: Fast Frequency Response from Energy Storage

How much operating reserve do we need?

• Limited need for high value reserves.
• Total market for regulating reserves in all U.S. RTO/ISO markets is ~2.6 GW.
• Already have ~700 MW of new battery storage
• Increased competition from DR and other sources
• What’s the next big thing?
Battery storage peaking capacity
Recent Focus – Peaking Capacity

- Aging peaking capacity in the U.S.,
- Other growing economies with increasing peak demand (air conditioning, climate impacts)

Installation dates of U.S. peaking capacity (non CHP CT, IC, oil/gas steam)

Significant peaking capacity now over 40 years old

Over the next 20 years, we would expect about 152 GW of peaking capacity to retire in the U.S.
Challenge of Comparing Storage to Conventional Peaking Capacity: 1) Capacity Credit/Capacity Value

Capacity credit/capacity value reflects the ability of a generator to be available during periods of highest system stress. This is typically during the periods of peak demand. Analysis must determine the energy capacity (hours) needed to provide an alternative to conventional peaking capacity.

Florida has narrow peaks well suited for shorter duration storage

New York has longer peaks so requires longer duration storage
Challenge of Comparing Storage to Conventional Peaking Capacity: 2) Operational Value

- Batteries and combustion turbines with the same power capacity may have substantially different operation in economic dispatch
 - Batteries and CTs typically have low generation capacity factor (<20%) but batteries may still have higher capacity factors than CTs
 - Batteries may have different operational profiles, acting to avoid thermal generator starts. This value is difficult to capture, and is uncompensated in ISO/RTO markets.
- LCOE vs LCOS may be a poor comparison metric

Simulations of storage in production cost models often show short spikes of battery output to avoid thermal plant spikes and address ramping events
So How Cheap Does Storage Have to Be?

We are nearing a tipping point for 4-hour storage providing capacity services – but how big is this market?
Potential for Storage as Peaking Capacity in Today’s Grid

Storage Capacity (MW)

Battery duration
- 4-Hour
- 6-Hour
- 8-Hour

Storage Penetration (Fraction of Annual Peak)

Battery duration
- 4-Hour
- 6-Hour
- 8-Hour

How much?
Higher penetrations of RE will change the economics of battery storage

- Renewable energy can lower the cost of using batteries for peak demand reduction.

Some power systems are nearing a tipping point for 4-hour storage providing capacity services instead of conventional generators.

How Do Renewables Affect This?

With increased PV penetration, the capacity value of PV decreases while the capacity value of storage increases.
Impact of PV on 4-Hour Storage Potential in California

Consistent correlation of storage capacity with PV. Very limited correlation with wind in the U.S.
Where should storage be deployed?
Where should storage be deployed?

1. At the load site?
2. Near remote renewables?
3. Coupled with other generation technologies (e.g., solar + storage, gas + storage)?
Location 1: Within Load Centers

• Allows replacement of peaking capacity in congested regions
 – Reduced siting challenges of thermal generation
 – Defers investment in transmission and distribution
 – Avoided T&D losses
 – Scalable

Southern California Edison hybrid battery storage, gas turbine peaker system
Location 2: Co-Located with Remote RE Resources

Example: Interaction Between Storage and Transmission in the Western United States

- Best wind resources are not close to major population centers
- Significant transmission capacity will be needed
- Transmission typically operated at relatively low capacity (based on capacity factor of wind)
Storage can reduce transmission requirements

Capacity Factor of this 200 MW of transmission is about 10%

Remove 200 MW of transmission and add 150 MW of storage

When evaluating such configurations it is important to consider the ability of storage to provide additional services. But also compare to load-sited storage.

Duration curve for 1000 MW of wind in Texas
Location 3: Integrated with Renewable Generation

- Enhance unit flexibility
- Reduce costs through shared componentry
- Provide streamlined acquisition for off-takers
- Can lead to inefficient levels of storage if required with all variable RE (ignores benefits of geographic diversity)

AC-coupled (flexible charging)

DC-coupled (flexible charging)
Siting Can Change Relative Value of Various Applications

Which location is best?

…It depends!

Analysis is needed to optimize the costs and benefits of various storage siting options.

Siting closer to load can increase capacity and energy value.

Siting near remote renewable resources may increase transmission value.

Analysis is needed to optimize the costs and benefits of various storage siting options.

Where?

Which location is best?

…It depends!

Analysis is needed to optimize the costs and benefits of various storage siting options.

Siting closer to load can increase capacity and energy value.

Siting near remote renewable resources may increase transmission value.

Analysis is needed to optimize the costs and benefits of various storage siting options.

Where?
Conclusions / Opinions

1. Stand-alone “renewable integration” applications of energy storage are typically neither needed nor cost effective in most grids.

2. Ancillary services (regulating reserves) appears to be cost effective for a few storage devices, but with limited market size.

3. When properly scheduled, long-duration (several hours of capacity) batteries provide an alternative to combustion turbines for meeting peak capacity requirements.

4. We are approaching a “tipping point” where storage provides a cost-effective alternative to conventional peaking capacity.
 – This application also needs to consider the energy arbitrage value of storage. Combining energy and capacity applications is key as the value of storage for energy arbitrage alone is relatively low and is unlikely pay for any existing storage technology/device.
 – RE will help accelerate the storage tipping point and increase the overall market size.

5. There is no easy “one size fits all” rules for where storage should be located. It is very application and grid-specific.

6. Careful analysis of storage is required to ensure it is sized and located properly, and that appropriate rules exist that can capture the value it can provide.
Thank you
Questions?

Webinar Panel

Paul Denholm
National Renewable Energy Laboratory
Email: Paul.Denholm@nrel.gov

Jennifer Leisch
United States Agency for International Development
Email: jleisch@usaid.gov

Greening the Grid
greeningthegrid.org
Email: greeningthegrid@nrel.gov