Renewable Energy Zone (REZ) Transmission Planning Process

Nathan Lee
National Renewable Energy Laboratory

Transmission Planning for a High Renewable Energy Future
Greening the Grid Webinar
September 6, 2017
Outline

1. What is the Renewable Energy Zone (REZ) Transmission Planning Process?
2. Overview of the REZ Process
3. The REZ Toolkit
What is a Renewable Energy Zone (REZ)?

A **REZ** is a geographical area that enables the development of profitable, cost-effective, grid-connected renewable energy (RE).

A REZ has:

- High-quality RE resources,
- Suitable topography and land-use designations
- Demonstrated interest from developers

All of these support cost-effective RE development.
What is the REZ Transmission Planning Process?

The REZ Transmission Planning Process is a proactive approach to plan, approve, and build transmission infrastructure connecting REZs to the power system.

- Helps to increase the share of solar, wind and other RE resources in the power system while maintaining reliability and economics.
- Focuses on large-scale wind and solar resources that can be developed in sufficient quantities to warrant transmission system expansion and upgrades.

REZs and transmission infrastructure to access zones – Western Renewable Energy Zones Initiative (Schwartz 2012)
Why is the REZ Process Advantageous?

Traditional transmission planning may not align with RE development as decisions need to be made well in advance of RE generation development decisions.

Circular Dilemma

- Regulators need to see RE generator
- RE generator needs financing
- Transmission needs regulatory approval
- Financiers need to see transmission

Approximate planning and construction time (years)

- 2-3 years
- 5-10 years
- 10-20 years
Overview of the REZ Process

STEP 1. PROCESS DESIGN & VISION STATEMENT

Summary:
- Assess resource
- Screen exclusion areas
- Identify the areas with the highest quality developable resource

Output:
Study areas map and supply curves

STEP 2. RENEWABLE ENERGY RESOURCE ASSESSMENT

Summary:
- Assess resource
- Screen exclusion areas
- Identify the areas with the highest quality developable resource

Output:
Study areas map and supply curves

STEP 3. CANDIDATE ZONES SELECTION

Summary:
- Gauge commercial interest
- Identify areas where high quality resources intersect with commercial interest

Output:
Candidate zone map and supply curves (one per area)

STEP 4. TRANSMISSION OPTIONS DEVELOPMENT

Summary:
- Select scenario creation (bundling) methodology
- Conduct cost-benefit analysis of options
- Steady-state, dynamic stability, production cost, and reliability analysis

Output:
- Select scenario creation (bundling) methodology
- Conduct cost-benefit analysis of options
- Steady-state, dynamic stability, production cost, and reliability analysis

STEP 5. FINAL TRANSMISSION PLAN DESIGNATION

Summary:
- Select transmission option that best complies with predefined criteria, including reliability standards, economic benefits, and environmental goals

Output:
Final transmission order

STEP 6. TRANSMISSION SYSTEM UPGRADE

Summary:
- Select transmission option that best complies with predefined criteria, including reliability standards, economic benefits, and environmental goals

Output:
Final transmission order

9/6/2017
Step 1 - The Importance of Stakeholder Engagement

General REZ Process Organizational Structure (Lee, Flores-Espino, and Hurlbut 2017)

Example REZ Process Decision Makers and Stakeholders

<table>
<thead>
<tr>
<th>Decision Makers</th>
<th>Stakeholders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy ministry or agency officials</td>
<td>RE developers</td>
</tr>
<tr>
<td>Environment ministry and other relevant ministry officials</td>
<td>Electric Utilities</td>
</tr>
<tr>
<td>Regulators</td>
<td>Environment, resource, land use authorities</td>
</tr>
<tr>
<td>Power system planners</td>
<td>Environment and other interest groups</td>
</tr>
<tr>
<td>Transmission system operators</td>
<td>Non-governmental organizations</td>
</tr>
</tbody>
</table>
Overview of the REZ Process

STEP 1. PROCESS DESIGN & VISION STATEMENT

STEP 2. RENEWABLE ENERGY RESOURCE ASSESSMENT
- Summary: Select areas with highest potential
- Output: Study areas map and supply curves
- Assess resource
- Screen exclusion areas
- Identify the areas with the highest quality, developable resource

STEP 3. CANDIDATE ZONES SELECTION
- Summary: Identify zones with highest probability of development
- Output: Candidate zone map and supply curves (one per area)
- Gauge commercial interest
- Identify areas where high quality resources intersect with commercial interest

STEP 4. TRANSMISSION OPTIONS DEVELOPMENT
- Summary: Bundle candidate zones and conduct analyses of the options
- Output: Cost, benefit, and reliability impacts for each transmission alternative
- Select scenario creation (bundling) methodology
- Conduct cost-benefit analysis of options
- Steady-state, dynamic stability, production cost, and reliability analysis

STEP 5. FINAL TRANSMISSION PLAN DESIGNATION
- Summary: Select transmission option according to pre-set criteria
- Output: Final transmission order
- Select transmission option that best complies with predetermined criteria, including reliability standards, economic benefits, and environmental goals

STEP 6. TRANSMISSION SYSTEM UPGRADE

(Lee, Flores-Espino, and Hurlbut 2017)
Overview of the REZ Process

STEP 1. PROCESS DESIGN & VISION STATEMENT

STEP 2. RENEWABLE ENERGY RESOURCE ASSESSMENT
Summary:
- Assess resource
- Screen exclusion areas
- Identify the areas with the highest quality, developable resource

Output:
Study areas map and supply curves

STEP 3. CANDIDATE ZONES SELECTION
Summary:
- Gauge commercial interest
- Identify areas where high quality resources intersect with commercial interest

Output:
Candidate zone map and supply curves (one per area)

STEP 4. TRANSMISSION OPTIONS DEVELOPMENT
Summary:
- Select scenario creation (bundling) methodology
- Conduct cost-benefit analysis of options
- Steady-state, dynamic stability, production cost, and reliability analysis

Output:
Cost, benefit, and reliability impacts for each transmission alternative

STEP 5. FINAL TRANSMISSION PLAN DESIGNATION
Summary:
- Select transmission option that best complies with predetermined criteria, including reliability standards, economic benefits, and environmental goals

Output:
Selected transmission option according to pre-set criteria

STEP 6. TRANSMISSION SYSTEM UPGRADE

(Lee, Flores-Espinio, and Hurlbut 2017)

Step 3 - Screening Zones Based on Developer Interest

Areas with excellent RE resources may not be attractive to private developers.

In this step developers demonstrate their interest in the screened areas to ensure that the candidate REZs are commercially attractive for development.

Examples of commercial interest and financial commitment (Lee, Flores-Espino, and Hurlbut 2017)

- Pending or signed interconnection agreements
- Leasing agreements
- Letters of credit
- Interconnection studies by a transmission owner or grid operator
- Other indications deemed appropriate by the regulatory authority
Overview of the REZ Process

STEP 1. PROCESS DESIGN & VISION STATEMENT

STEP 2. RENEWABLE ENERGY RESOURCE ASSESSMENT

Summary:
- Assess resource
- Screen exclusion areas
- Establish the areas with the highest quality, developable, and applicable

Output:
- Study areas map and supply curves

STEP 3. CANDIDATE ZONES SELECTION

Summary:
- Gauge commercial interest
- Identify areas with high quality resources intersect with commercial interest

Output:
- Candidate zone map and supply curves (one per area)

STEP 4. TRANSMISSION OPTIONS DEVELOPMENT

Summary:
- Select scenario creation (bundling) methodology
- Conduct cost-benefit analysis of options
- Steady-state, dynamic stability, production cost, and reliability analysis

Output:
- Bundle candidate zones and conduct analyses of the options
- Cost, benefit, and reliability impacts for each transmission alternative

STEP 5. FINAL TRANSMISSION PLAN DESIGNATION

Summary:
- Select transmission option that best complies with predetermined criteria, including reliability standards, economic benefits, and environmental goals

Output:
- Select transmission option according to pre-set criteria
- Final transmission order

STEP 6. TRANSMISSION SYSTEM UPGRADE

Overview of the REZ Process

STEP 1. PROCESS DESIGN & VISION STATEMENT

Summary:
Select areas with highest potential

Output:
Study areas map and supply curves

- Assess resource
- Screen exclusion areas
- Identify areas with the highest quality, developable resource

STEP 2. RENEWABLE ENERGY RESOURCE ASSESSMENT

Summary:
Identify zones with highest probability of development

Output:
Candidate zone map and supply curves (one per area)

- Gauge commercial interest
- Identify areas where high quality resources intersect with commercial interest

STEP 3. CANDIDATE ZONES SELECTION

Summary:
Bundle candidate zones and conduct analyses of the options

Output:
Cost, benefit, and reliability impacts for each transmission alternative

- Select scenario creation (bundling) methodology
- Conduct cost-benefit analysis of options
- Steady-state, dynamic stability, production cost, and reliability analysis

STEP 4. TRANSMISSION OPTIONS DEVELOPMENT

Summary:
Select transmission option according to pre-set criteria

Output:
Final transmission order

- Select transmission option that best complies with predetermined criteria, including reliability standards, economic benefits, and environmental goals

STEP 5. FINAL TRANSMISSION PLAN DESIGNATION

STEP 6. TRANSMISSION SYSTEM UPGRADE

Step 5 – Designation of a Transmission Plan

The appropriate authority designates the final transmission plan to be implemented.

This designation includes:

- A geographic description of the REZs
- Identifies major transmission improvements to cost-effectively deliver electricity
- Identifies who will pay for the improvements
- Updates any estimates on the maximum generation capacity in the REZs

REZs and new transmission infrastructure to access zones - Texas Competitive Renewable Energy Zones (CREZ) (Hurlbut, Chernyakhovskiy, and Cochran 2016)
Overview of the REZ Process

STEP 1. PROCESS DESIGN & VISION STATEMENT

Summary: Develop a clear vision and objectives for the REZ Project.
- Assess resource
- Screen exclusion areas
- Identify the areas with the highest quality, developable resource

STEP 2. RENEWABLE ENERGY RESOURCE ASSESSMENT

Summary: Identify areas with the highest potential.
Output: Study areas map and supply curves
- Gauge commercial interest
- Identify areas where high quality resources intersect with commercial interest

STEP 3. CANDIDATE ZONES SELECTION

Summary: Identify zones with highest probability of development.
Output: Candidate zone map and supply curves (one per area)

STEP 4. TRANSMISSION OPTIONS DEVELOPMENT

Summary: Bundle candidate zones and conduct analyses of the options.
Output: Cost-benefit, and reliability impacts for each transmission alternative
- Select scenario creation (bundling) methodology
- Conduct cost-benefit analysis of options
- Steady-state, dynamic stability, production cost, and reliability analysis

STEP 5. FINAL TRANSMISSION PLAN DESIGNATION

Summary: Select transmission option according to pre-set criteria.
Output: Final transmission order
- Select transmission option that best complies with predetermined criteria, including reliability standards, economic benefits, and environmental goals

STEP 6. TRANSMISSION SYSTEM UPGRADE

(Lee, Flores-Espino, and Hurlbut 2017)
Renewable Energy Zones (REZ) Toolkit

Online platform with information and tools to aid practitioners in successfully deploying the REZ Process around the world.

Toolkit Resources for REZ:

• Process guidebook for practitioners
 www.nrel.gov/docs/fy17osti/69043.pdf

• Technical assistance for the REZ Process

• Learning and training sections

• Topical quick-reads and in-depth resources

• Tools, templates and exercises

Coming Soon!

Greeningthegrid.org
REZ Process: A Guidebook for Practitioners

- Helps power system planners, key decision makers, and stakeholders apply the REZ process to integrate transmission expansion planning and RE generation planning

- Presents an organizational structure an effective, stakeholder inclusive REZ Process

- Details each step of the REZ process from identifying a vision to transmission upgrades

- Based on the Texas Competitive Renewable Energy Zones (CREZ) initiative and may be modified based on each country’s or application’s unique circumstances.

www.nrel.gov/docs/fy17osti/69043.pdf
Key Takeaways on the REZ Process and REZ Toolkit

1. The REZ Process is a transmission planning process. It is not (just) a mapping exercise to develop an RE resource atlas.

2. Successful implementation of the REZ Process enables integrated transmission and RE generation development to harness the best and most developable RE resources and deliver the lowest possible cost electricity from renewable generation.

3. The REZ Toolkit offers resources and technical assistance to help practitioners understand and implement the REZ Process.
Thank You!

Nathan Lee
nathan.lee@nrel.gov